Equações de Maxwell

Estas equações relacionam o campo elétrico () e o campo magnético (), juntamente com suas variações no espaço (representadas pelo operador diferencial nabla – ) e no tempo . Nas equações de Maxwell também aparecem a corrente (), a densidade de cargas elétricas () e e duas grandezas inerentes ao meio em que os campos elétrico e magnético se propagam: a permissividade () e a permeabilidade (); no caso do vácuo, aparece o subscrito 0.

 1. Lei de Gauss para o campo elétrico    
    

 2. Lei de Faraday-Henry    
    

 3. Lei de Gauss para o campo magnético    
    

 4. Lei de Ampère-Maxwellv    
    

Uma manipulação habilidosa deste conjunto de equações, bastante simplificadas se considerarmos regiões do espaço sem cargas e correntes, resulta em um par de outras equações que são prontamente reconhecidas como equações de ondas:

A teoria ondulatória nos diz que a velocidade de propagação de uma onda é dada pela raiz quadrada do inverso da constante que multiplica o termo temporal de sua equação. Assim, a onda elétrica (e também a magnética) se propaga no vácuo com uma velocidade de

(É muito importante frisar que este valor é calculado, e não medido. Os valores numéricos de
e de são obtidos, e só então é calculada a velocidade da luz).

Compartilhar
Alexandre Cherman
Astrônomo da Fundação Planetário da Cidade do Rio de Janeiro Experiência na área de Astronomia, Física e Matemática, com ênfase em Astronomia Fundamental, Cronologia e Cosmologia, atuando principalmente nos seguintes temas: divulgação científica, cosmologia, educação, história da ciência, história da física e visualização científica. Possui seis livros publicados. http://lattes.cnpq.br/3947740530141462